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GOODNESS OF FIT' TESTS

wI't SPECIAL REFERENCE TO TESTS FOR EXPONENTIAfITY

I. In recent years there have been big advances in goodness-of-fit

testing; famous tests like X2 and those based on the empirical distribution

function or on spacings have been improved or extended, particularly

to deal with nuisance parameters; new tests have been proposed for special

situations like testing for normality and exponentiality; modern computer

"techniques have enabled new examinations of older statistics li.e bI and b2

measuring skewness and kurtosis.

We wish to give a guide to some of these advances, following some

principles which we hope are based on practical considerations.

2. The.problem is as follows: a random sample of n values of x is

given, and we wish to test the null hypothesis, that the distribution

function of x , G(x) , is a given distribution

S0o: G(x) = F(x;O)

tvhere 0 is a vector of parameters which may be partly or wholly unknown.

3. Historically, the classical test is Pearson's X2 , usually called

chi-square; although of long history, much work is still being done on

this stati.stic. It is a natural statistic for discrete distributions,

but when F(x;.) is continuous, one loses information by grouping; however,

-the test is ensily adapted for use when 0 is unknown, or part oF 0 is

unknown. rhc' adaptation implies a method of estimating parameters which
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is often not followed in practice, and also uses asymptotic results for

finite samples, and errors are introduced in this way; nevertheless, the

statistic is well established in the user's lexicon,

4. There are two other assets for X2 which can be turned into principles

for practical use.

Principle 1. The user likes to keep close to the original data; he does

not want, if it is avoidable, to make an elaborate transformation of his

x-values to, say, new z-values, which are then used in calculating a test

statistic, but which as a data set mean little to him.

Principle 2. When a test statistic is significant, the user will want to

interpret this in terms of some irregularity in the original data, which

is suggested by the form of the test statistic.

In'the X2 test, one sees the original data on a line, and only

grouping is involved; thus Principle I is observed. With reference to

Principle 2, a high value of the statistic can usually be seen to come from

one or two cells and the irregularity in the data is at once pinpointed,

5. Over the years, other methods of testing have been introduced. An

important problem is always how to handle nuisance parameters. We shall

discuis only tests for continuous distributions, for which chi-square is not

so naturally suited, and will begin with two general types of test: EDF

statistics and regzression tests.

6. EDT statistics Pro the oldest historically; the firat was the

Kol;"goolv (-Smirnov) s.tatistic. EDF refers to the e.mpirical distribution

C,,n.t ion 1: (x)
I2
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number of x-valucs <
n n

and EDF statistics are based on a measure of the discrepancy betwecn

F (x) and F(x;O) These are both graphed; and, loosely speaking, D
n C

the Kolmogorov-Snirnov statistic, is the largest vertical gap between the

curves. More precisely, let F(x) refer to F(x;O) with 0 known, or

with estimates of 0 inserted where necessary. Then

D+ =sup {F1(x) - F(x)}, D- = sup {F(x) - F n(X)

x x

-and, D = (D+, D')

A related statistic is (Kuiper's) V = D+

Other statistics measure the discrepancy in other ways; three of the

most important are the Cramer-von Mises W 2, Watson U2 , and Anderson-

Darling A 2

112 = n {n(x) F(x) }2 dF(x) ,

12 = {n F (i 11M fn(y - F(y)) dr.(Y)} 2Fy dF(x)
-- O-J

_co -CO

A2 = n jw(x) {Fn(x) - F(x)}2 dF(x)

with
1

w(x) = (){T -I (x) }

Tn order to fix our ideas, and because we wish to concentrate later

on this test, let us suppose that the hypothesis to test is that n values

of x co.t itilte a random saimpcle fro-n the exponential distribution:

F(x;O) = I - exp(-4(x-c)) , x > a ;

- ,. •1 on' or both in>t)' he unknown. When 0 is known, asymptotic and

on,- o 1i'ien 0 i kni~3



muc-h f 1ni t.-n null di St -i htion theory is know n for tihe above st atistics, and

they have slowly co:,Ie into u'je. Undoubtedly, wider' use was hold up because

in the important situations where 0 was not known, the distribution theory

was lacking. In very recent years this has been somewhat filled in, and EDF

statistics can now be used for tests for the following important distributions:
2

(a) the normal, with p and/or a unknown,

(b) the exponential distribution, ý unknown, ot known.

It is of course easy to test for the exponential distribution when a is

also not known; the smallest number of the sample is snbtracted in turn from

all the others and the resulting set is tested for exponentiality with

unknown and a equal to zero. The above tests are in the literature, and are

described in Stephens (1974b). Also, significance points have recently been

provided Cor tests for:

(c) the Gamma disti-ibution, scale parameter unknown (Pottitt and

Stephens, 1976),

(d) the extreme value distribution, scale and/or location parameters

unknown (Stephens, 1976b).

In summary of the theoretical side, asymptotic distributions of EDF

statistics do not depend on e if this involves location and scale parameters.

Asymptotic points have been calculated for W 2, U2 and A2 (Stephens, 1976a;

Durbin, Knott and Taylor, 1975), and recently progress has been made for finite

n , for the test for exponentia.lity, by Durbin (1975) and Margolin and Maurer

(1976). But in general, points for all statistics, for finite n, have been found

by Monte Carlo nethods. These nust be extrapolated to give asymptotic points for

/•j 1) and V/n V . For all the statistics Stephen'; (1974b; also given in Table 54

of Pearson and Hlartley, 1972) has provided correction factors which enable the

statistics to be used with only the asymptotic points. Many other references



to work, in this area are ill Stephens (1971b, 1976a) ; for an overall smnnmry

of the DI" and its properties see Durbin (1973).

Advantages of EDF statistics are:

(a) they follow Principles 1 and 2;

(b) they are easily computed (one formula for all n );

(c) over a wide range of alternatives they are more powerful than

X2 (probably because of grouping in X )

(d) they provide consistent tests; if x in fact comes from G(x)

which is not P(x;O) , then as n F no (x) -- G(x) , and the test statistics

will be declared significant.

Points (c) and (d) can be included as two new principles:

Principle 3. A test should be consistent and unbiased.

Principle 4. A test should be powerful over a wide range of alternatives.

Clearly we cannot find a test which is, in general, most powerful (or even

powerful) over all alternatives to F(x;O) ; and since the alternative

is often not very precisely known, we establish Principle 4, to cover a

wide range of possibilities. It may be modified somewhat to demand good power

over only certain classes of alternatives; e.g., in a test for exponentiality,

one may want power only against heavy-tailed distributions.

7. Rzegreýssion tests. These are especially suitable for situations where

unknown parareters are location and scale parameters, and have been developed

for tests for normality and exponentiality, particularly by Shapiro and

will. (I.,o, 1972). The test is based on a regression of the order statistics of

thu -m.awpic against the expected valucs of order statistics from some canonical

vcrsioio of the distribution tested. Thus suppose m. , for i frojm I to]

S, are th-u expected values of order statistics from N(0,1) ; and let the

5
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test b,.' that an x-set comes from N(i, (2) ,nand 02 tmknown. Then

Suppose we order X .<. x 2 -5 ... < Xn Wle have

(1) E(Xi) = - O ai.1 1

and a regression of x. on m . should be a straight line.1 1

The x. are correlated because they have been ordered; but using1

generalized least squares, an estimate of a5 can be found as the estimated

slope of the line. This is

( = - aax,

say, where m is the vector of m. , x the vector of x. , and V the

covariance matrix of normal order statistics. The test statistic III
^2 2

depends essentially on a comparison of (0 with s , the usual sample

variance. From the theoretical point of view, many problems are posed by

W1 , both with distribution theory, even asymptotic, and by the fact that

V is not known for high n ; nevertheless, in practice, Shapiro and Wilk

gave approximate values of a above, for n 5 S0 For n > 50

Shapiro and Francia (1972) replace mV-I1 by i' , for both statistics,

null distribution points are given by Monte Carlo methods. A disadvantage

in the test for normality is that it needs a different a for each n

De Wet and Venter (1973) have investigated the statistics arising when we

regress x on h where hIi the i-th component of h is the inverse of

the stand',rd normal distribution evaluated at i/(n+l) ; this is "close to"

m. but not equal to it. For theoretical purposes h is easier to work

with, 1nd for example, de I'et and Venter have found thc asymptotic distribution

6



o) the st:atistic correspnondinrg to W LaBrecquc (1972) has extended the

model (1) to

E(xi) = . + am. + +2w2 () +i)

where w2 (mi) is a quadratic and w3 (mi) a cubic in m. Y and used

regression estimates of B and 8 to gives tests. Power is increasedC, 2 3

again for most alternatives, but the price is extensive computation; also

one begins to get further from straightforward interpretation of the test

statistics. Stephens (197S) also has investigated this model.

S. Advantages and disadvantages of W. The W type of statistic certainly

satisfies Principles 1 and 2; the regression picture is informative. For

the normal test, it has high power (not so overwhelmingly better than EDF

statistics as at first asserted, see Stephens (1974b), but nevertheless on the

whole marginal], better than W2 or A, and these in turn are much better than
2

D or y ). On the other hand, W is more difficult to compute, and

another disadvantage is the lack of mathematical theory referred to above.

Of course, this may be rectified in due course. Connected with this is a

greater difEiculty: the W technique may not be consistent. The corresponding

test for-the exponential distribution above is based on a test statistic

n( - x 2
IW.E =

E 2 2'(n - 1){F X. nx2'
i i

and Shapiro and ',ilk have presented this test and given Monte Carlo percentage

points. Sark:adi (1973) has recently cast doubt on the consistency of the

Shai ro-W'i 1k tests for !•ni-ariity and exponcntia]ity, though he affirms the

con-.istency of the Shapiro-Francia (1972) test. Sarkadi gives a version of

7



b0 E whi.ch h11 states is , consistenlt, but no percentage points. It. would seem

that more work is still needed on the consistency of these procedures, and

indeed of other statistics.

9. Before turning to tests for exponentiality in more detail, we point

out other important lines of recent research.

(a) In connection with eliminating nuisance parameters before a test

can be applied, O'Reilly and Quesenberry (1973) have a method, the conditional

probability integral transformation, which is elegant and of considerable

mathematical interest; however, quite extensive computations aro ieeded.

(b) Watson, and later Durbin and do-workers, and Stephens, have

developed yn(X) = /n (Fn (x) - F(x;O)) as a Fourier series; W2 is a

functional of yn (x) and its properties can be written in terms of the

Fourier coefficients. Similar work was done also on U2 and A2 by these

authovs. (Durbin and Knott, 1972; Durbin, Knott, and Taylor 1975;

Stephens, 1974a).

Asymptotic distributions, and also asymptotic power, can be found for

certain alternatives (tending, of course, to the null as n- ) Durbin

and his cc-workers also propose use of the low-order Fourier coefficients

(which they call components) as test statistics, and show these to be more

powerful, in certain circumstances, than the entire statistics (e.g., in a

test of iW(o,!) when the alternative is N(y/vrn, 1) , y a positive constant).

However, in Stephens (1974a) it is shown that these circumstances are

restricted, so much so that it is difficult to recommend components. For example,

in a tes -For N(O,1) -gainst N(Y 1//'n, 1 " Y2/"thn, a component sensitive to

the vx'luhe of1 Y might be totally unaffected by F, ,-om a practical point

of view, c(.pecially when parameters must be estimated, they violate Principle 1.
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For .xtmole, co'.'ider t he test. for- exponentiutl ity, ca - 0 , f. unknown; one

fi ust mu1st calculate, from x. , the value
1

then, for j l ,2,...,lO , the values

y. = E cosbrrj x.) ;
Ji=1

finally, the k-th component_ is given by

10
zk = Z b yj~ ,'

j=l b

where b are found by methods of Durbin, Knott and Taylor (1975). (It
kj

may be that the bkj given in the Durbin, Knott and Taylor paper are in error

(Stephens, 1976c)).

Not only are these techniques (also that of de Wet and Venter (1973))

mathematically interesting; they also give impetus to questions concerning

the purpose, efficiency, and utility of goodness-of-fit tests, and how to

start measuring these concepts.

(c) On very practical lines, recent work by D'Agostino and Pearson

(1973) and by Bowman and Shenton (1975) has ercouraged the use, in tests

for normality, of the skerness statistics b1 and the kurtosis statistics b 2

These are well established statistics; the first authors gave new tables of

significance points, and suggested how they might be combined in an omnibus

test statistic; howevcr, they assumed independence of b1 and b 2 , and

this is not justific-,i. Another approach to using both l. and b is to

mark them as a point in a 2-dimensional graph; if the point falls outside

pjvc.i conrtours on the.,ah.,, normality will be rejccted. This is the

a 1)pnroLch of Fow-,"an and Shenton (1975); it provides a technique for using

two statistics simtul t'-1coisly to assess IIH Y altough one can regard the

9



Contour :• zi function of bI and b2 1h ich is in effect a third statistic

Ib) which H is judged. The above methodIs appeal to Principle 1; the

practical rant has a "feel" for bI and b2 and, possibly, for the implications

if the values lead to rejecting H0

10. Tests for the exponential distribution. We now return to the exponential

test, to the special case where a is known. This may be taken as zero; it

is convenient to replace ý by e so that 110 is that the sample is from

(2) F(x;O) = 1 - exp(-Ox) , x > 0

where the scale parameter e is unknown.

A multitude of test statistics have been posed for this important problem;

not only dues the distribution arise in many statistical problems, but it

also appears prominently in the theory of renewal processes, in particular,

the Poisson process. If events are random in time, we expect the intervals

between them to be exponential. Important questions are then whether this

is so, against a more general Gamma alternative, say, or whether they are

cxponential, but e is changing. Some test statistics have been devised

with these applications in mind.

We have already mentioned (a) EDF statistics and (b) Shapiro-Wilk IE

as available tests. Most other tests exploit some interesting connections

between the exponential distribution and the uniform. These are briefly

cescribod as follows.

(a) Suppose XI,X 2 ,...,X [not in order] is an exponential sample

from F(x,') ; let X(L) be the ordered sample.

(h) Suppose U ,[1,, .. ) Un is a random (i.e., unordered) sample from

(ot U be the ordered sawple; let D. be the spacins

10



between the U(i) ; i.e., D1 = U(1 ), 1)2 --1 U(2)-1(1)' -. D = U(n) -U(n-1)'

I l-U(n) Note that the spacings will not be. ordered; let Di)
nIl (n)-U (i)

denote the ordered spacings.

(c) The G transformation: uniforms to uniforms

/ l' U( (2) (3 U(n)
D D D \ D

1 2 3 4 nli-1

The picture is obvious. Let D(0) 0 . Let

D= (n + 1 - j)(D(j) - D(.I)) , j

Then D! is another set of unordered uniform spacings (Sukhatrne, 1937).
I

One can clearly build up another ordered uniform sample,

U' = 1 D.

(J) i-l 1

We shall write U' = GU for this transformation. Durbin (1961) showed

that, loosely speaking, G makes large spacings larger and small spacings

smaller. It makes a "nearly uniform" sample appear further removed from uniform,

though it cannot be repeated indefinitely; after a certain point, an extremely

non-uniform sample, i.e. very uneven spacings, is transformed to appear more

uniform than before.

(d) The J transformation: exponentials to uniforms. Put the

successive (unordered, exponential) X. along a line in sequence. L.et

the total E X. = Z Divide by Z to get1

J
U = E X./Z , j = l,...,n-I

"Ilion (well known): U(j) are ordered uniforms: note there are only n - 1

of them. We write U = JX
11



X X X X

1 2 3 4 nI
A~ter

Abt Z U/t

by Z (1) (2) (3) (n-1)

In the case of renewal processes, the quantities ZU(j) shown with a

cross, will be times of events (j-th blip on a screen, j-th battery failure

(batteries being inserted as soon as one fails)). One can adapt the above

to the situation where one observes for fixed time T 1 , and obtains n

observations (used batteries) in T1 , and time left over. Divide by TI

and the U are n uniforms.ci)
(e) The K transformation: exponentials to uniforms.

(1) Start with X (exponentials); find U = JX . Note:

U are ordered uniforms; but their sizes depend on the

original random ordering of the X.

(2) Apply G to get U' = GU . U' are ordered uniforms; the

combined U = GJX gives the same set of U' no matter

what the original X-ordering. A formula can be found to

give U. directly from the, Xi ; we write U' = KX (= GJX)

(Seshadri, Csorgo and Stephens, 1969).

(f) The N transformation: exponentials to exponentials. We can
I I

complete the circle by returning the, Ui to exponentials X. , and these1 1

can be found directly from the X Let X (0)

X. (n + 1 - i)(X(i) - X(i l))

I..;e :i, i tc X' NX ; the X' are exponcietial, paraneter 0 , i.e. from

d j :;tr b-.:t i' (2).

12



I1. Exponent ml tests. Note that the trans['ormations J and K reduce

an xponetitial sample to ordered uniforms; in so doing they eliminate the

unknown parameter . Conversely, properties of the uniform distribution

can thus be used to give estimates of 0 , including estimates from only

the first r values of X , i.e. a censored sample. The maximrim likelihood

estimate from a complete sample, used in EDF tests, is 1/.

Once the exponentials have been changed to uniforms, tests for

uniformity can be directly applied. Sometimes this is the way the tests

are proposed; at other times the tests are given in terms of the original

exponentials. T'hese connections are pointed out in order to try to see

the relations between many of the proposed statistics.

12. Proposed tests for exponentiality.

The following are some proposed techniques for testing for exponentiality,

roughly graded into groups.

Group A - Direct use of the EDF.

(1) FDF statistics: direct estimation of 0 and use of D, V, W

2 2
U or A, say. 1-tail test

(2) Srinivasan I) : closely related to D above and asymptotically

equivalent to it (Moore, 1973); uses Rao-Blackwell theorem for bettor

estimate of F(x;O) 1-tail test

(3) Finkoclstein and Schafer, S* : an EDF test, similar to W2 in (1);

S* m i.6 where 6. = max[fF(X();) - (i-l)/nlVF(X( i);) - i/n7]

Monte Carlo points are given for S* 1-tail test



Group B - Rceoression.

(4) Modified Shapiro-Wilk (Stephens, 1977)

2

n=n+l) F x . x2

distributed like WE for n + 1 observations. 2-tail test

(The test for origin "known", as given by Shapiro and Wilk (1972) is

strictly a composite test, for both exponential shape and a hypothesized

origin; IV is the version comparable to other tests being considered

here. For the alternatives below, it is generally better than the WE

'test given by Shapiro and Wilk (Stephens, 1977)).

Group C - Tests based on transformations to uniformity,

Transformations J and K below refer to those described in Section 11,

If we decide to produce uniforms by J or K , we can then follow

up with appropriate tests for uniformity, e.g.

(i) EDF tests, or

(ii) tests based on spacings; much impetus to this established

line of work was given by Pyke (1965);

(iii) tests based on the position of the mean of the U or U'

(produced by J or K respectively) or of one order statistic

U or U' for a chosen r ;Ucr) or r) .

(iv) the Shapiro-Wilk regression test. This is now based on the range

over the standard deviation of the U (or U') sample.

,OMc tests using these techniques are:

(5) j followed by 1ED1 staitistics in (1) above for testing for uniformity.

1)4



1.;is (1965) shows the procedure to lead to inconsistent tests; this

was verified also in Seshadri, Csorgo and Stephens (1969).

(6) K : followed by EDF statistics for testing uniformity, i.e.

2 2 2
K , then D ,V , I U orA 1 tail test

These were considered by Seshadri, Csorgo and Stephens (1969), and

are generally better than (6).

(7) K : followed by U' , i.e. the mean of U' . Suggested by Lewis

(1965): Lewis' S' is

S' = U' = 2n - 2 E i Xri./Z
i

where Z = EX.. This can be regarded as a test derived from regression of11 1

X on i.. 2 tail test; ~(i) "

(8) K : followed by U' for suitable r . First suggested by Lewis
(r)

(1965), and later by Tiku, Rai and Mead (1974); the latter

recommended r n n/2 . 2 tail test

Group D

n
Other tests. Let Z F X. , = Z/n (the X. are the original exponentials

i=l 1

i -
from (2)). Let m. be E(X M ) when = 1.; m. is then E (n - j + 1)(i) lj=1

(9) Jackson (1967):
n
E x

T C=i 2-tail test
z

This cpn he regardcd as derived from a regression of X(i) on m.

(10) . .-, (19-17, 1951):

M -2 ; In

15



equivalent to

n
Mk -2 E (In X. - lnX)i=l

equivalent to

n
M** = -2 E In nD.i=l

On 11, M is distributed X2n 2-tail test

M is related to Bartlett's test for equal variances. Moran's test

is asYmptotically most powerful against the general r-distribution

alternative (Shorack, 1972):

f(x) = a xa-I cxp(-Ox)/r(a) , x > 0 , a > 0

It is a strong test against the Weibull alternative

f(x) = 9(Ox)a-I exp(-(Ox) a/a) , x > 0 , a > 0

(Bartholomew, 1957).

n.2 2
(11) Bartholomew (1957): S = E (Xi/Z) equivalent to S = E D.

i=l i=l

1-tail test

The second form of S was discussed by Moran (1947).

(12) Gall and Gastwirth (1976): this is a recently proposed test based on

r
1 (p)) E X iz/

where r 7 fnp] . They suggest p = 0.5

(13) 'r,:n:.:oriri1tion N (exponentials to exponentinls), followed b), Moran's M

16



CoLsidered by Epstein (1960); Fercho and Ringcr (1972) gave power

against Weibull alternatives, in the context of arrival times, and

failure rates.

13. Power studies. We have examined the power of most of these statistics

by Monte Carlo methods. Some results, for n = 10 and 20., and for'10o

tests, are given in 'fables I and 2.

Notes:

(a) Powers are given in percent; numbers in parenthes~s indicate the

number (in 1000's) of M.C. samples used for the experiment.

(b) Authors usually recommend whether the test is one-tail or two-

tail; this advice was followed, and no two-tail test was adapted to one-tail

in order to improve the power for a specific alternative. Thus the test

is performed as though the alternative were unknown; naturally one might

adapt the test to one-tail against known alternatives. This might be

particularly important where the test is for inter-arrival times or failure

rates, and the alternative is a speeding-up of observations, or a lower

(higher) failure rate.

(c) 'Mostly our results match those given by other authors, the exception

being where those authors did adapt the tests as in (b) above.

14. Conclusions.

(a) The following all give good results:

(1) FEDF using estimation of 0 , and the A, 2 or

Pin'kelstein-Schafer statistic,

(2) Lewis, Jackson, Shapiro-,ili,

17



(3) Moran,

2 2
(A) K--transform, using A2, W

(b) Groups (1) and (2) in (a) follow Principle 1 quite closely:- the

ED" picture is informative, the Lewis and Jackson StZLtistics are dependent

on the slopes of a plot of X against i and m. respectively

(ignoring covariances); the Shapiro-Wilk test uses a regression on m.1

including covariance. Moran's statistic is perhaps less pictorial, but if the

Xi are put sequentially along a line (.not ordered), the spacings should be

like uniform spacings and Moran tests this. It has the merit of known best

power against some important alternatives. The K transform is less direct:

though if the mean of the ordered uniforms so generated is then used as test

statistic, it leads directly to Lewis' statistic.

(c) If our results for Moran are compared with those of Fercho and

Ringer (1972) for the N transformation followed by Moran's statistic (jther'e

called Epstein), it seems that the direct use of Moran's statistic is preferable

for the "Weibull alternative considered (i.e., it is not helpful to use the N

transformation).

(d) The Kolmogorov-Smirnov statistic is not good either with EDF directly

or after the transformation K ; similarly for the closely connected Srinivan's D

(e) It is still necessary to pursue research on consistency. Two main

problems are involved: (1) are given tests, say for uniformity when a transfor-

mation like K has been made, themselves consistent against departures (or at

least a wide class) from uniformity? (2) do several parent populations all give

uniformity under one of these transformations?

(f) The test considered here has been the test that a sample is from

aii exponential parent ponulation. When the problem concerns arrival times

or other p!'o,)lc,;;:s w.erc the exponentials arrive scquentially, there will

18



huL special alternatives which will promote one test over another. It would

appear that further work is needed on the efficiency of tests for this

particular problem.
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The (dstributjOnS referred to in the table include:

a-i1 (lxb-i
Beta (a, b) f (x) = const. x' (I-x) 0 < x < 1

Uniform f(x) = I ; 0 < x < 1

Lognormal 0 f(x) = const. exp {-(ln x) 2/20 2} ,x> 0

Weibull 0 f(x) = const. X -1 exp(-x ) x > 0

Half-normal y is N(0,1) , x is IYI ; x > 0

Ilalf-Cauchy y is Cauchy, median zero; x is ly!; x > 0

Test statistics are abbreviated as follows:

S - Srinivasan

F-S - Finkelstein-Schafer

S-W-S -. Shapiro-Wilk, modified by Stephens

S-C-S - Seshadri-Csorgo-Stephens

L - Lewis

T-R-M - T.iku-R-i-Iead

J - Jackson

M - Moran
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